
Optimizing Regular Expression Matching with
SR-NFA on Multi-Core Systems*

Yi-Hua E. Yang
Ming Hsieh Dept. of Electrical Eng.

University of Southern California

Email: yeyang@usc.edu

Viktor K. Prasanna
Ming Hsieh Dept. of Electrical Eng.

University of Southern California

Email: prasanna@usc.edu

Abstract—Conventionally, regular expression matching (REM)
has been performed by sequentially comparing the regular
expression (regex) to the input stream, which can be slow due
to excessive backtracking [21]. Alternatively, the regex can be
converted to a deterministic finite automaton (DFA) for efficient
matching, which however may require an extremely large state
transition table (STT) due to exponential state explosion [17, 27].
We propose the segmented regex-NFA (SR-NFA) architecture,
where the regex is first compiled into modular nondeterministic
finite automata (NFA), then partitioned, optimized, and matched
efficiently on modern multi-core processors. SR-NFA offers
attack-resilient multi-gigabit per second matching throughput,
does not suffer from either backtracking or state explosion, and
can be rapidly constructed. For regex sets that construct a DFA
with moderate state explosion, i.e., on average 200k states in the
STT, the proposed SR-NFA is 367k times faster to construct and
update and use 23k times less memory than the DFA approach.
Running on an 8-core 2.6 GHz Opteron platform, our prototype
achieves 2.2 Gbps average matching throughput for regex sets
with up to 4,000 SR-NFA states per regex set.

Index Terms—Regular expression, NFA, bit-level parallelism,
thread-level parallelism, multi-core processor

I. INTRODUCTION

High-speed deep packet inspection, content filtering and

data mining are becoming more pervasive in the Information

Age. Regular expression matching (REM) is a core capability

of these functions, where pre-defined patterns are matched

against continuous input streams. Recent network intrusion

detection systems [1, 2, 4] rely on REM with dynamic sets of

complex regular expressions (regexes) against high bandwidth

and potentially malicious input streams. Such REM activities

can tax the underlying network processing system heavily in

both processing cycles and memory usage.

Conventionally, REM has been implemented in software

[3] where regex symbols are compared sequentially to the

input characters; such performance is highly input and regex

dependent and can be subject to the “backtracking” attack

[21]. Alternatively, REM can be performed by a finite automa-

ton, which is free of the backtracking behavior and can find

multiple and overlapping regex matches concurrently in the

input. A regex of length n over alphabet Σ can be compiled

into a nondeterministic finite automaton (NFA) with O(n)
states and at most O(n2) transitions [16]. At run-time, the

* Supported by U.S. National Science Foundation under grant CCR-1018801.

NFA maintains the activeness of its states, each of which can

ε-transition to zero or more states. In total the NFA makes

from O(1) to O(n2) state transitions per input character.

The NFA can be further converted to a deterministic finite
automaton (DFA), which maintains only one state number at

run-time. For each input character, the DFA looks up the state

transition table (STT) for one state transition, performs a small

(constant) amount of computation, and transitions to the target

state. The matching throughput of DFA-based REM is thus

limited by the (random-access) latency of the STT access. For

simple regexes whose STT can fit mostly in the processor

cache, DFA-based REM usually achieves very good matching

throughput on multi-core systems.

For some regexes, converting the O(n)-state NFA to a DFA

can generate an excessively large STT with up to O(2n)
states and O(2n |Σ|) transitions, a phenomenon known as the

exponential state explosion [17, 27]. In these cases, DFA-based

REM becomes impractical on multi-core systems for several

reasons. First, a regex composed of several hundred symbols

(n > 100) can require a DFA STT with multi-gigabytes of

memory, which may not be feasible on platforms with limited

memory size (such as an on-line NIDS). Second, an input

that causes irregular state accesses across the entire STT can

cause cache thrashing and be used as an performance based

attack to the REM system. Third, due to (random-access)

memory bandwidth competition, the throughput of a state-

exploded DFA may not scale well in number of cores on a

shared-memory multi-core system (as shown in [19] before

applying input-specific training and optimizations). Finally, the

NFA-to-DFA conversion can be both computation and memory

expensive, making it difficult to update the REM solution.

Several techniques [7, 13, 22] have been proposed to

compress the STT by introducing nondeterminism to the DFA.

These nondeterministic features usually require more complex

run-time processing and multiple random memory accesses

per input character; both can reduce matching throughput.

The compression ratio is usually highly regex-dependent, and

the compressed DFA size still much larger than the original

NFA. The DFA compression algorithm can be complex (e.g.,
quadratic in the number of DFA states [7]), making regex

update even more difficult.

Due to the above reasons, we believe NFA-based REM

is a valuable complement to DFA-based REM on multi-core

2011 International Conference on Parallel Architectures and Compilation Techniques

1089-795X/11 $26.00 © 2011 IEEE

DOI 10.1109/PACT.2011.73

423

2011 International Conference on Parallel Architectures and Compilation Techniques

1089-795X/11 $26.00 © 2011 IEEE

DOI 10.1109/PACT.2011.73

424

Table I: Commonly used basic and extended regex operators.

Op. Name Example Description

· Concatenation q1q2 q2 right after q1

| Union q1|q2 Either q1 or q2

* Kleene closure q∗ q zero or more times

+ Repetition q+ q one or more times

? Optionality q? q zero or one times

{m,n} Constrained rep. q {m,n} q in m to n times

[...] Character class [a− c] Either a, b or c

[^...] Inv. char. class [ˆ\r\n] Neither \r nor \n

systems. While most simple regexes can be handled by a

DFA, those complex regexes that would cause exponential

state explosion as DFAs can be processed by an efficient NFA

architecture:

1) We propose the segmented regex-NFA (SR-NFA) archi-

tecture for REM that explots both bit and thread-level

parallelism on multi-core systems.

2) We focus on fast REM compilation, small memory

footprint and scalable matching throughput in number of

cores. As a result, an SR-NFA with thousands of states

can be constructed entirely onto the level-1 cache of a

modern processor in a few millisecond.

3) We design optimizations to reduce memory and compu-

tation complexity of SR-NFA.

For regexes that would cause severe state explosion as DFA,

the proposed SR-NFA architecture reduces memory usage

from tens gigabytes to several kilobytes and construction time

from hours to seconds, and achieves 1.6 ~ 2.5 Gbps attack-

resilient throughput matching 200 ~ 3,200 regex symbols.

Section II gives the background on regular expression

matching. Basic concept and data structures of the SR-NFA ar-

chitecture are described in Section III; mapping and optimiza-

tion on multi-core processors are discussed in Section III-D.

A prototype implementation is evaluated in Section V. Sec-

tion VI goes over related works, while Section VII concludes

the paper and discusses future work.

II. BACKGROUND

A. Regex, REM, and Match Ratio

By definition, a regular expression (regex) describes a

regular language over a fixed alphabet. Three basic operators,

concatenation (·), union (|) and Kleene closure (*), provide

the facility to combine character symbols to form arbitrary

regex patterns. In addition, most regular expression matching

(REM) software also support several extended operators of-

fering convenient representations for complex pattern. Table I

lists the commonly supported regex operators.1

Definition 1: Given a regular expression (regex) r which

defines the regular language L(r) over alphabet Σ, and an

input character sequence X = [x1 · · ·xw], xi ∈ Σ. The process

1Some software REM features such as backreference and recursion do not
produce regular languages. They are not the focus of this work.

of regular expression matching (REM) for r searches X for all

sub-sequences X(j) ⊆ X , 1 ≤ j ≤ m, such that X(j) ∈ L(r).
We say the REM process matches regex r against input X of

length w and produces a set of m matches {X(1), . . . , X(m)}.

B. REM by Sequential Comparison

REM has been implemented as software libraries [3] where

the regex symbols are sequentially compared to the input char-

acters to search for a match condition. When there are more

than one possible regex symbols matching the input character

(usually due to the Kleene closure or union operators), the

alternative paths are selected one at a time in either a depth-

first (greedy) or a breadth-first (lazy) manner.

If, following the tentatively selected search path, a regex

symbol cannot accept an input character at some later point

in time, the matching progress must be backtracked to the

original selection point and a different path is selected. Alter-

native search paths may continue to fail, which can induce a

large number of backtracks for regexes with multiple Kleene

closures and unions over complex sub-patterns. Due to the

backtracking behavior, a regex with K multi-match segments

can require O(K2) times computation of a single segment

to determine whether a match exists in the input [21]. As

shown in [21], the backtracking behavior poses a serious

performance-based attack on the REM system that utilizes the

sequential comparison.

C. REM by Nondeterministic Finite Automata

REM can also be performed by an NFA through the

following procedures.

Definition 2: To match a regex r against a sequence of input

characters X by an NFA:

1: Obtain the matching regex r′ by prefixing r with “.*”

(Kleene closure over an any-character).

2: Construct an NFA to accept L(r′), following the

McNaughton-Yamada construction [16].

3: Feed the characters in X to the NFA. A match is found

when a match state is reached.

Step 1 above allows the resulting automata to search for

r anywhere inside X . As a result, the NFA constructed to

accept L(r′) in step 2 is different (and more complex) than

an NFA that accepts L(r).2 As long as the finite automaton

accepting L(r′) is continuously fed with the input characters,

all matches (sub-sequences which are members of L(r)) in the

input will be reported by step 3. As such, NFA-based REM is

functionally more powerful than the serial REM.

With NFA-based REM, multiple states can be active at

the same time, while each active state can make transitions

to zero or more states per input character. Although the

number of states is linear in the length of the regex [9], high

memory/computation bandwidth per input character can be

required to access/process the transitions from all active states.

2Special operators (e.g., ^ and $, respectively) may be used to force the
search to begin and end at input boundaries (usually a newline or the EOF
character). For simplicity and without loss of generality, we assume these
conditions are taken care of when obtaining the matching regex r′.

424425

Figure 1: A modular NFA for the regular expression

“\x2F(fn|s)\x3F[^\r\n]*(i|&*)”.

This makes NFA-based REM inefficient when implemented

straight-forwardedly on processor-based systems.

D. REM by Deterministic Finite Automata

The NFA can be further converted to a DFA using the subset
construction algorithm, which traverses the NFA with all

possible input and find any subset of concurrently active NFA

states. Each such (unique) subset of NFA states is assigned to

a new DFA state.

With DFA-based REM, only one DFA state is active at any

time. For each input character, the DFA makes one access to

the state transition table (STT), performs a constant amount of

computation, and finds a single transition target. While being

computationally efficient (and optimal), the DFA can suffer

from state explosion [12, 22, 27] during its construction, where

the number of states required by the DFA is quadratically

or exponentially larger than the original NFA [17, 27]. State

explosion can be caused by certain regex patterns, or by

combining several non-exploding patterns in one DFA [27].

Without state explosion, DFA-based REM usually offers

better throughput performance than NFA-based REM on multi-

core systems. This is especially true when the size of the

DFA STT is in the same order of magnitude as the on-chip

cache size of the multi-core processor, in which case most

accesses to the STT are served quickly without accessing

external memory. When there is state explosion during the

DFA construction, DFA-based REM can become impractical

due to the large memory requirement, severe cache thrashing,

and extremely high construction and update complexity.

III. SR-NFA ARCHITECTURE

A. Modular NFA Construction

To compile a regex r into SR-NFA, we first obtain

a modular NFA for r using the modified McNaughton-

Yamada (MMY) construction [26]. Figure 1 shows

a modular NFA constructed by MMY for regex

“\x2F(fn|s)\x3F[^\r\n]*(i|&*)”. With MMY,

each regex symbol always generates a pair of nodes in the

modular NFA; one node in the pair has ε fan-in and labeled

fan-out transitions, while the other one has labeled fan-in

and ε fan-out transitions. Each pair of nodes corresponds to

a state of the modular NFA.

The MMY construction can be graphically described as

Figure 2. Each oval represents the a sub-NFA, with both p and

Basic modified McNaughton-Yamada Constructions

p

p q

q
p

p | q

q

p

p* q

q

Extended modified McNaughton-Yamada Constructions

m-2
copies

p

p? q

q p

p+ q

q

p

p{m,n} q

qp p pn-m-2
copies

Figure 2: Graphical description of the basic (upper) and

extended (lower, supporting ?, + and {m,n}) MMY con-

structions.

2 3 4 5 6 7 8 E

1 1 1

2 1

3 1

4 1

5 1 1 1 1

6 1 1 1 1

7 1 1 1

8 1

Figure 3: The state-reachability matrix of a single-segment

SR-NFA for Figure 1.

q representing sub-regexes. Each dashed line represents an ε-
transition connecting the output of one sub-NFA to the input

of another. In the lower half of Figure 2, we further extend

the MMY construction to directly handle the extended regex

operators (see Table I). Both optionality (?) and repetition (+)

are special cases of the Kleene closure where the backward and

forward ε-transitions, respectively, are omitted. Several cases

of constrained repetition ({m,n}) are possible, depending on

the relative values of m and n (whether they are equal to each

other, or to zero or infinity); we only show the general case

where 0 < m < n < ∞. Handling these extended operators

directly helps to reduce the time and memory complexity of

the NFA construction.

B. Single-Segment SR-NFA

We first describe an SR-NFA with only one segment. We

observe that any modular NFA with n states can be fully

described in two data structures:

• An n×n state-reachability matrix, which records poten-

tial state transitions between every pair of states.

• An n-element character-acceptance vector, which records

the set of character values accepted by every NFA state.

1) State-Reachability Matrix (SRM): Figure 3 shows the

state-reachability matrix (SRM) for the modular NFA in Fig-

425426

Hex(char) 1 2 3 4 5 6 7 8

0A 0

0D 0

26 (&) 1 1

2F 1 1

3F 1 1

66 (f) 1 1

69 (i) 1 1

6E (n) 1 1

73 (s) 1 1

Figure 4: The character-acceptance matrix of the SR-NFA in

Figure 1. All unspecified rows have value 0’s except at column

6, where they have value 1’s.

ure 1. Each ’1’ at row h and column k in the SRM represents

an ε-transition going from state h to state k.

At run time, each active NFA state will perform one SRM

lookup to find the vector of its ε-transition targets. Such vectors

from all active stateas are bit-OR’d together to form the

vector of “potentially active” states prior to the input character

matching. Suppose p states are active concurrently at run time,

it takes p accesses to the SRM and p bit-OR operations to find

the next vector of potentially active states.

The memory complexity of an SRM with n states is exactly

n2 bits or
⌈
n2/8

⌉
bytes.

2) Character-Acceptance Matrix (CAM): Figure 4 shows

the character-acceptance matrix (CAM) for the modular NFA

in Figure 1. A ’1’ at row c and column k in the CAM shows

that character c is accepted by state k in the NFA.

Note that instead of creating a vector with n (variable-

length) lists of character values, one list for each state, we

use a matrix of size 256 × n to encode the acceptance of

every character value (total 256 values) at every state (total

n states). In the worst case, this can increase the memory

complexity by 256/8 = 32 times, suppose each state accepts

only a single (8-bit) character value. However, due to the

(common) use of character classes in real-life regexes, an

NFA state often accepts a (custom-defined) character class

with tens and even hundreds of values. In addition, the matrix

representation allows us to perform character matching for all

n states in a single row-access to the CAM followed by one

bit-AND operation.

For a modular NFA of n states, the CAM has memory

complexity of 256× n bits of 32× n bytes.

3) Single-Segment Operation: Algorithm 1 describes the

run-time algorithm of single-segment SR-NFA.

C. Data Structures for Multi-Segment SR-NFA

With only one segment in the SR-NFA, the memory com-

plexity of the SRM grows quadratically in the number of

states. In addition, each bit-AND and bit-OR on the state

vector becomes a proportionally more complex operation. The

size of the SRM can become exceessively large for a single-

segment SR-NFA with a few thousand states. On the other

Algorithm 1 Single-segment SR-NFA Operation.

Require: A state-reachability matrix R; a character-

acceptance matrix A; an initial state vector q̄ and a match

state vector m̄.

Ensure: Regular expression matching (REM) for regex r
corresponding to (R,A, q̄, m̄)

1: The SR-NFA maintains a bit-vecotr v̄ = [v1 · · · vn], where

each vi corresponding to one NFA state.

2: for each input character c do
3: v̄ ← v̄ OR q̄ {initial states from NFA root(s)}

4: v̄ ← v̄ AND A(c) {character matching}

5: t̄ ← [0 · · · 0] {a temporary states}

6: for each vi = 1, 1 ≤ i ≤ n do
7: t̄ ← t̄ OR R(vi)
8: end for
9: v̄ ← t̄ {update run-time states}

10: t̄ ← t̄ AND m̄
11: if t̄ �= [0 · · · 0] then
12: Report t̄ as match(es)

13: end if
14: end for

hand, the SRM is usually very sparse in the NFAs for most

real-life regexes.

To improve memory efficiency, we partition large SR-NFA

into multiple segments of the same length. Ideally, each state

in one segment only transitions to none or few states in other

segments, with the length of the semgents matching the size

of the longest word in the multi-core processor. Algorithm 2

describes the heuristics we use to segment a large SR-NFA.

Note that due to the recursive nature of the MMY construction

(see Section III-A), the SR-NFA has a rather “clean” structure

with each state transitioning either forward or backward to a

relatively small number of target states. We take advantage of

this “natural order” of states when partitioning the SR-NFA

into multiple segments.

After the partitioning, each segment has its own SRM to

handle the intra-segment ε-transitions. In addition, two types

of pseudo-states and transition matrices are added to each

segment to handle cross-segment ε-transitions:

• A set of forward-pseudo states and a forward-transition
matrix (FTM), which relay forward ε-transitions to the

next segment (usually caused by long chains of cancate-

nations and/or wide unions in the regex).

• A set of backward-pseudo states and a backward-
transition matrix (BTM), which relay backward ε-
transitions to the previous segment (always caused by

Kleene closures around large sub-regexes).

To make cross-segment transitions, the SRM of each segment

is slightly widened to cover the forward and backward-pseudo

states in that segment. When a state needs to make a cross-

segment transition, it first transitions to a forward-pseudo

(backward-pseudo) state, which then relays the transition to

the next (previous) segment by accessing the corresponding

426427

Algorithm 2 SR-NFA segmentation algorithm.

1: for each state do {find its “natural order”}

2: First based on the forward ε-transitions caused by the

concatenate operators.

3: Then based on the backward ε-transitions caused by the

* or + operators.

4: Finally based on the ε-transitions caused by the union

or other operators.

5: end for
6: for each state in above order do {find state number}

7: Number the state in its natural order.

8: If two states were not relatively ordered, then either one

can have a lower state number.

9: end for
10: for each state in increasing state number do
11: if the current segment is full then
12: Create a new segment.

13: Use the new segment as current segment.

14: end if
15: Add the state into the current segment.

16: end for

row in the FTM (BTM).

More importantly, the FTM (BTM) is also widened to let

the pseudo state transition to all normal and pseudo states in

the next (previous) segment. This allows a forward (backward)

transition to go across multiple segments by passing through

multiple pseudo states.

Specifically, assume the SR-NFA is partitioned into s seg-

ment, where each segment i, 0 ≤ i ≤ s − 1, has ni normal

states, fi forward-pseudo states and bi backward-pseudo states.

The SRM of segment i is extended to size n× (ni + fi + bi),
with additional columns corresponding to the forward and

backward-pseudo states. The FTM of segment i is a bit matrix

of size fi× (ni+1+fi+1), allowing the forward-pseudo states

of segment i to ε-transition to both normal and forward-pseudo

states of segment i+ 1. Similarly, the BTM of segment i has

size bi × (ni−1 + bi−1), allowing ε-transitions to both normal

and backward-pseudo states of segment i− 1.

Figure 5 shows a multi-segment SR-NFA for the modular

NFA in Figure 1. Each segment in Figure 5 has up to 3 normal

states and 2 forward-pseudo states. For clear presentation

we did not use backward-pseudo states in this example; the

backward transitions are handled in the same way (although

in a revsered direction) as the forward transitions. Figure 6

shows the per-segment SRM and FTM to implement the multi-

segment SR-NFA in Figure 5. Note that instead of using an

8 × 8 SRM as in Figure 3 for the single-segment SR-NFA,

here we have 5 much smaller matrices resulting in over 40%

reduction of memory usage.

D. Multi-Segment SR-NFA Processing

To update the run-time states for REM on a multi-segment

SR-NFA, three types of processing are performed iteratively,

one iteration per input character.

Figure 5: The segmented SR-NFA converted from Figure 1

with automatically introduced forward-pseudo states.

Segment 0: states 1 through 3

Reachability matrix Forwarding matrix
2 3 F1 F2

1 1 1

2 1

3 1

4 5 6 F3

F1 1

F2 1

Segment 1: states 4 through 6

Reachability matrix Forwarding matrix
5 6 F3

4 1

5 1 1

6 1 1

7 8 E

F3 1 1 1

Segment 2: states 7 and 8

Reachability matrix Forwarding matrix
7 8 E

7 1 1

8 1

(None needed)

Figure 6: Per-segment reachability and forwrading matrices

for the segmented SR-NFA in Figure 5.

1) Intra-segment processing (ISP) : Two operations are

performed by ISP: character matching and intra-segment tran-

sitions. Both are handled in the same way as described in

Algorithm 1. The only difference is that the number of colums

in the state-reachability matrix (SRM) is increased to include

both forward-pseudo and backward-pseudo states as transition

targets. On the other hand, the pseudo-states do not take place

in the character-acceptance matrix (CAM). The pseudo-state

values are cleared at the character matching step.

With the number of states per segment matching the length

of the processor word, the worst-case time complexity of ISP

per input character becomes linear in the number of segments.

Furthermore, only the active states in a segment need to be

processed, and in practice the number of concurrently active

states is usually much smaller than the total number of states

in the segment. With the help of bit manipulation instructions

such as BSR (bit scan reverse) and LZCNT (leading zero

count), the time complexity of ISP per input character can be

reduced to the number of active states in the segment.

Because ISP only concerns state transitions within individ-

ual segments, for each input character, ISP for all segments

427428

can be performed independently in any order.
2) Forward-segment processing (FSP): FSP handles ε-

transitions from one segment to a following segment between

two iterations of ISP. For each segment, FSP must be per-

formed after ISP, which produces the initial set of active

forward-pseudo states (if any) in that segment.

A forward ε-transition can go across multiple segments by

passing through multiple forward-pseudo states in consecutive

segments. An active forward-pseudo state is cleared after it

makes its ε-transitions. Eventually, every forward-pseudo state

will ε-transition to some normal states in the following seg-

ments, upon which time the current iteration of FSP is finished.

This can be performed efficiently by sweeping through the SR-

NFA from the first segment till the last segment. Specifically,

we first process the active forward-pseudo states in segment 0,

making any ε-transitions to the (normal and forward-pseudo)

states in segment 1; then, we process the active forward-pseudo

states in segment 1, making any ε-transitions to the states in

segment 2; and so on, until we reach the last segment.

The time complexity of FSP per input character is bounded

by the total number of segments times the maximum number

of active forward-pseudo states per segment. In practice,

the number of active forward-pseudo states at run time is

usually much less than the number of active states; the total

computation complexity of FSP NFA is usually less than that

of ISP. However, due to the strong (sequential) dependency

between FSP on consecutive segments, there is much less

instructio-level parallelism (ILP) in FSP than in ISP.
3) Backward-segment processing (BSP): BSP is similar to

FSP except BSP handles ε-transitions in the reverse direction,

from one segment to a previous segment. . BSP also must be

performed on any segment after ISP, which will produce the

initial set of backward-pseudo states active in that segment.

To relay potentially long backward ε-transitions across

multiple segments, BSP is performed from the last segment

back to the first segment in (reversed) consecutive order. In

practice, the time complexity of BSP per input character is

even smaller than that of FSP, since there is usually very few

long-range backward ε-transitions (always caused by Kleene

closures over large sub-regexes) in real-world SR-NFAs.

Although BSP must be performed sequentially on consec-

utive segments in the reverse order, it can be performed in

parallel to FSP with proper segment locking mechanism.

IV. SR-NFA OPTIMIZATIONS

A. Specialized STR and REP Segments

Even with a multi-segment SR-NFA, the various matri-

ces, especially the state-reachability matrix (SRM) and the

character-acceptance matrix (CAM) can still be sparse for two

common types of regex sub-patterns:

• String: A sequence of characters concatenated one after

another. E.g., “Authentications\s:”.

• Repetition: A single character class is repeated a large

number of times. E.g., “[^\r\n]{1024}”.

We notice that in the case of string sub-pattern, every state

within its span implicitly ε-transitions to the next adjacent

state, thus the SRM is not needed. In the case of repetition
sub-pattern, all states within its span accept the same character

class, thus neither the SRM nor the CAM is needed.

Recall that with k-byte segments, a set of n states can take

�k × n	 bytes in the SRM and 32×k bytes in the CAM. Thus

representing sub-strings or sub-repetitions in normal SR-NFA

segments can waste a lot of memory for unused space in SRM

and CAM. Such memory inefficiency can boast the SR-NFA

size and reduce its critical cache performance. To alleviate

this problem, we design two types of specialized segments,

STR and REP, to handle the sub-strings and sub-repetitions

respectively.
1) Basic STR and REP optimizations: Instead of occupying

one normal segment bit by every sub-string state, we create

an STR segment of n bits to hold a sub-string of n states. In

addition, we add three STR-related special bits to the normal

segment: an entry bit signalling when and where to active

the first state in the sub-string, an valid bit showing the

“activeness” of the sub-string, and an exit bit specifying when

to check for the output condition of the sub-string. The STR

segment has no SRM, but is associated with its own CAM.3

At run-time, whenever the entry bit for an STR segment is

activated, the least-significant bit in the STR segment is set to

1. For each input character, the STR segment is simply left-

shifted by 1 bit before the segment is matched to the input

character. When a ’1’ reaches the most-significant bit in the

STR segment, the exit bit for the STR segment is set to ’1’ in

the normal segment, from which transitions to other states in

the normal segment can commence.

Similarly, we create an REP segment of n bits to hold a sub-

repetition of n states. The REP segment requires neither SRM

or CAM; the entire REP segment can be matched to the input

character as a single bit in the normal segment. This results

in even greater savings in both memory and computation

complexity.
2) Advanced STR and REP optimizations: On top of the

basic optimizations described above, we further perform more

sophisticated optimizations to map the STR and REP segments

more efficiently onto the processor architectures.

First, we notice that there can be many short (< 10 symbols)

sub-strings in a regex, resulting in numerous “call-outs” to

the STR processing. To handle such cases more efficiently on

modern processors with long words, we design mechanisms

to “merge” multiple short sub-strings into one long (64-bit)

STR segment in byte granularity. The entire STR segment is

processed as a single unit, while each short sub-string still

maintains its “identity” through the valid bit associated with

it in the normal segment.

For sub-repetitions, it is the opposite scenario. Often a

character class is repeated hundreds of times. Storing long and

variable-length bit vectors is rather computationally expensive

in most processor architectures. Instead, we dissect a long sub-

repetition into multiple REP segments, each with the length of

3In REM most strings are compared in a caseless manner, while some have
complex character classes. Using CAM offers speed advantage by comparing
the sub-string to the input character in parallel.

428429

a processor word. This allows multiple long sub-repetitions to

be stored and processed in a uniform word array.

These two optimizations lay the groundwork for our final

optimization technique, an “activeness” bitmap for both types

of specialized segments. Because all STR or REP segments now

have the same (processor word) length and are processed in a

uniform way, we can use a bitmap to represent their activeness,

one bit per segment. By paying a little extra memory and

computation, the bitmap allows the REM process to skip the

non-active segment processing quickly using the LZCNT and

BSR instructions (see end of Section III-D1).

B. Merging multiple regexes

Many real-world regexes can be short after removing long

sequences of sub-strings and sub-repetitions. Over one-third

regexes used by Snort IDS [4] consists of less than 40

characters and compiles to no more than 40 NFA states.

One way to improve the throughput performance of multi-

pattern REM is to merge multiple short regexes into a single

segmented SR-NFA. This is especially beneficial if various

regexes share a common prefix, for which only one set of

SR-NFA states are needed.

Eventually, however, various merged regexes will diverge

to different match states. If M regexes are merged to be

processed together, then the resulting SR-NFA shall have a

tree-like structure with M leaves. To handle such match-

state divergence, the SR-NFA can use a tree-like segmentation

structrue where all segments are organized in a binary tree,

rather than a linear sequence. In an s-segment SR-NFA with

tree-like structure, each segment i, 1 ≤ i < s/2, can make two

types of forward transitions: one to segment 2i and the other to

segment 2i+1; each segment j, 1 < j ≤ s, can make backward

transitions only to segment
j/2�. Segments numbered from

�s/2	 to s are “leaf” segments, whose forward-pseudo states

are overloaded as the special match states.

Figure 7 graphically shows an example where 9 regexes

(r1–r9), some sharing common prefixes, are merged into a

segmented SR-NFA with 7 segments (s1–s7) using the tree-

like segmentation structure. Inside the segments, each colored

stripe on the left represents a sub-pattern of a particular regex;

each colored bar on the right represent a forward-pseudo state

for some sub-pattern. The dotted arrows show the sequence

of segments and forward-pseudo states traversed in order to

match regex r1 (purple) and r6 (brown), respectively.

Note that merging multiple regexes is different from union-
ing. With merging, each regex still maintains its identity; for

example, matching r1 in Figure 7 remains distinguishable

from matching r9. With unioning, however, multiple regexes

become a single, indistinguishable one. This difference is espe-

cially important for deep packet inspection type of applications

where matched regexes have critical individual significance.

C. Thread-level Parallelism for Multi-Regex Matching

Modern multi-core processors are built with increasingly

large numbers of cores. Each core is often equipped with

a dedicated level-1 (L1D) and/or leve-2 (L2D) data cache,

��

��

��

��

��

��

�	

�

��

��

�	

��

��

��

��

��

Figure 7: Example of 9 regexes (r1–r9) merged into a 7-

segment (s1–s7) SR-NFA with the tree-like structure.

ranging from a few tens to several hundred kilobytes in size.

In order to achieve scalable performance, it is especially

important to take advantage of the on-chip cache resources and

to fully utilize the available cores on the multi-core processors.

Below we describe two dimensions of thread-level parallelism

that can be exploited by our SR-NFA architecture on a generic

class of multi-core systems.

1) Parallelism with multiple regexes: Given the relatively

small size of most real-life SR-NFA, we can run a different

SR-NFA on every core in a multi-core system without increas-

ing much bandwidth pressure to the (shared) memory subsys-

tem. This allows us to scale up the number of concurrently

matched regexes proportionally to the total number of cores

without sacrificing the matching throughput.

For example, asssume each segment in the SR-NFA has up

to 40 normal states, 16 forward-pseudo states and 8 backward-

pseudo states. According to Section III, the run-time states of

each segment will be 8 bytes (64 bits) in length; the per-

segment SRM will take 40 × 8 = 320 bytes and the CAM

256×5 = 1, 280 bytes. Plus the FTM 16×8 = 128 bytes and

the BTM 8× 8 = 64, the entire segment can fit into 2 KB of

cache memory. The use of STR and REP segments can further

increase the total number of NFA states handled with little

memory requirement. Using the SR-NFA architecture, most

real-world regexes (even those compiled into hundreds of NFA

states) can be mapped entirely onto several tens kilobytes of

level-1 data cache in modern microprocessors.

2) Parallelism with multiple inputs: It is possible for a

multi-core system to process a single SR-NFA in multiple

cores with different inputs. Due to the small memory footprint

of the SR-NFA, having more cores accessing multiple SR-

NFAs will not pressure the external memory. Since the number

of cores in modern multi-core systems is increasing at a much

higher speed than the number of memory channels, SR-NFA

can achieve a much better throughput scaling for matching

regexes that would otherwise be converted to a large (state-

exploded) DFA.

429430

Table II: Memory usage for various segment sizes

Seg. type 32 48 64 STR REP

(bits) 22:7:3 33:11:4 44:15:5 64 64

CAM 704 1056 1408 2048 N/A

SRM 88 198 352 N/A N/A

FTM+BTM 40 90 160 N/A N/A

Total 832 1344 1920 2048 0

Bytes/state 4.7 5.1 5.5 4 0

V. PERFORMANCE EVALUATION

A. Resource Usage

Table II shows the amount of memory used for segments

of various types and lengths in our SR-NFA. We implemented

32, 48, and 64-bit normal segments, as well as 64-bit STR

and REP segments. Larger segments trade memory efficiency

off for matching capacity. For example, by increasing segment

size from 32 bits to 64 bits, we can process a 2x larger SR-

NFA with roughly the same throughput; on the other hand,

memory usage increases from 4.7 to 5.5 bytes/state.

While both specialized (STR and REP) segments are pro-

cessed 64 bits at a time, their designs (Section IV-A) allow

each segment to be utilized with single-byte granularity (i.e.,
each 64-bit STR or REP segment can store up to 8 short sub-

strings or sub-repetitions, respectively).

Although the 64-bit STR segment has a relatively large

memory size, its run-time processing is much simplified. There

is no SRM/FTM/BTM accesses needed, significantly lowering

the memory bandwidth required to process these segments.

The REP segment is essentially “free” in terms of memory

footprint (except the run-time state of 64 bits per segment). It

has even lower processing complexity than the STR segment,

as discussed in Section IV-A.

B. Construction Time

The REM solution construction time (or compilation time)

is a metric often ignored in the literature. However, in real-

world applications, it is usually one of the most important

metric for the usability of a REM program. In a dynamic

setting where regexes can be continually updated, or where

different subsets of regexes can be used to match against var-

ious inputs, the ability to quickly construct an REM solution

while still offering good performance becomes important.

Figure 8 shows the average time it takes to compile Snort

regexes incrementally into the SR-NFA architecture using

Algorithm 2. Analytically, each step in Algorithm 2 has time

and space complexity no worse than linear in total number

of states. In practice, compiling a regex (to 20 ~ 4,000 states)

takes less than 0.3 ms for all the tested real-life regexes used by

Snort. The sub-millisecond construction allows our SR-NFA

architecture to be updated at run time.

C. Throughput Performance

We evaluated our SR-NFA prototype on a dual-socket quad-

core Opteron 2382 server. For evaluation, we used 64-bit

0 200 400 600 800 1000 1200

regex count

0

0.04

0.08

0.12

0.16

0.2

0.24

0.28

0.32

0.36

0.4

C
o
m

p
ile

 t
im

e
 (

m
s
)

0

10

20

30

40

50

60

70

80

90

100

#
 s

ta
te

s

ave. time per regex ave. #states per regex

Figure 8: Compilation time (in milliseconds) per regex to

build an incrementally larger SR-NFA for the set of “regular”

regexes used by Snort rules.

normal and specialized (STR and REP) segments. Each normal

segment consists of 44 character matching state, 14 forward-

pseudo 4 backward-pseudo states. Not all pseudo states are

utilized in most segments. The fixed number of pseudo states

helps us simplify the programming and slighly improves the

run-time performance.

We partition 1134 real-life regexes from the Snort rulesets

in two groups:

1) Those “simple” sets of regexes which can be compiled

to DFAs with little or moderate state explosion. Each of

these DFAs has an STT taking less than 1 GB memory

and can be constructed in less than half an hour.

2) Those “complex” sets of regexes which are compiled

to DFAs with severe state explosion, resulting in multi-

gigabytes STT size and taking hours for compilation

(some could not even be practically completed).

In both groups above, a regex set consists of 2 to 7 regexes

and is compiled to an SR-NFA with 80 to 4,000 states. In total

we created 280 set, or on average 4 regexes per set. While 4

regexes per set is a relatively small number, we note that such

arrangement is actually useful in real-life scenarios:

• In practice, we usually do not need to match a large set

of regexes against a single input (e.g., an Internet traffic

flow). Instead, once the type of the input is identified, a

small set of regexes associated with the type is used.

• For all complex and even some simple regex sets, adding

more regexes results in exponentially larger STT and long

compilation time. Thus matching in small subgroups may

be the only choice (if at all possible) for these regex sets.

• Most simple regex sets do not cause state explosion when

compiled to DFA individually, but will when compiled

with other simple sets. Without compiling the regexes, it

is not always easy to tell in advance whether a set of

regexes will cause state explosion.

We implemented SR-NFA with basic configuration (base),

with the specialized STR and REP segments (rvt), and with

430431

0 500 1000 1500 2000

states per SR-NFA

0

100

200

300

400

T
h
ro

u
g
h
p
u
t
(M

b
p
s
)

simple_base simple_rvt simple_bm

(a) “Simple” regexes

0 1000 2000 3000 4000

states per SR-NFA

0

100

200

300

400

T
h
ro

u
g
h
p
u
t
(M

b
p
s
)

cmplx_base cmplx_rvt cmplx_bm

(b) “Complex” regexes

0 1000 2000 3000 4000

states per (complex) SR-NFA

0

500

1000

1500

2000

2500

3000

T
h
ro

u
g
h
p
u
t
(M

b
p
s
)

1 thrd 2 thrd 4 thrd 8 thrd

(c) Throughput scaling

Figure 9: Throughput optimization and scaling of SR-NFA for (a) regexes with little state explosion (simple); (b) regexes with

high degrees of state explosions (complex); (c) complex regex matching with 1, 2, 4 and 8 threads.

Table III: Performance comparison of SR-NFA with improved

sequential matching (ISM) and DFA approaches.

(average) Throughput Mem. size Compile time

SR-NFA 2.2 Gbps 8.6 KB 0.23 ms

ISM [21] ~1.2 Gbps n/a n/a

DFA < 0.7 Gbps 202 MB 84.4 sec

additional “activeness” bitmaps (bm) as discussed in Sec-

tion IV-A. As shown in Figure 9, our optimization techniques

improve throughput performance across all regexes of different

sizes and classes. (A few optimized data points are off the chart

and not shown in the plots.) In fact, our optimizations show

more throughput improvements in complex regex sets than in

simple regex sets. This makes the SR-NFA architecture even

more attractive for matching those regex sets that would result

in severe state explosions.

In Figure 9c we demonstrate the throughput scaling of

the SR-NFA architecture. We take the complex regex sets,

compiled with all optimization techniques, and run on 1 to 8

cores in the 8-core server. On average we are able to achieve

1.6 Gbps to 2.5Gbps with 8 threads. The close-to-perfect

throughput scaling in number of threads is expected since the

largest SR-NFA has a data structure much smaller than the

64 KB L1D cache on the Opteron processor.

D. Performance Comparison

Table III compares performance of SR-NFA with improved

sequential matching approach in [21], as well as a straight-

forward DFA-based REM. Throughput values from [21] are

scaled linearly in clock rate (2.0 → 2.6 GHz), pipeline width

(2 → 3 way) and number of cores (1 → 8) to the newer CPU.

The SR-NFA results are averages of the complex regex sets

(from Figure 9c). The DFA results are averages of regex sets

that compile to DFAs with an STT between 25 MB and 1 GB

in size (about 30% of all the regex sets we tested).

Note that we did not compare with all previously proposed

REM approaches for two important reasons. First, some pre-

vious REM solutions were based on or improved from DFA.

When there is little or no state explosion, those DFA-based

solutions can achieve very good throughput and are the pre-

ferred choice for REM; the SR-NFA, on the other hand, should

be used to handle cases where severe state explosion makes

DFA-based REM impractical. Second, a few prior work (e.g.
[14, 18]) propose simplified pattern matching mechanisms

that do not handle full regular expression capabilities.4 These

solutions can still be useful to match “regexes” known to have

the limited features. However, they are not considered full

regular expression matching solutions in this study.

VI. RELATED WORKS

NFA-based REM was initially implemented in a circuit-

based architecture [9], where an n-character regex is converted

to an n-state NFA and mapped to an integrated circuit using

no more than O (n) circuit area. Sidhu and Prasanna [20]

later proposed to construct NFA-based REM circuits on field-

programmable gate arrays (FPGA) [20]. Optimizations such as

input/output pipelining [11], common-prefix extraction [8, 11],

temporal [24] and spatial [25] multi-character matching, and

centralized [8, 15] and memory-assisted [25] character decod-

ing, were applied to further improve the matching through-

put and resource utilization. While achieving high matching

throughput (~10 Gbps) over large number (>1k) of patterns,

the Achilles’ heel of NFA-based REM on FPGA is the difficult

circuit-based implementation.

DFA-based REM utilizes relatively simple operations on

processor-based architectures and can achieve very good

throughput with simple regexes [23]. However, state-space

explosion of the resulting DFA can greatly increase the

amount of required memory, which could in turn impact the

memory performance and even the practical feasibility of the

solution. Various techniques were proposed to compress the

state transition table (STT) of the DFA with nondeterministic

features [7, 10, 12, 13, 22]. These techniques, however, can be

4It can be shown, as discussed in [5], that the simplified pattern construction
does not genrate all regular languages. A proof however is out of the scope
of this paper.

431432

computationally expensive and are often designed a-posteriori
to a particular set (or type) of regexes.

High-performance REM software was proposed in [18],

which matches pattern in a memory-based approach similar to

the Generalized Aho-Corasick algorithm [14]. While reporting

very high throughput, their software accepts only a simplified

set of regex construction; it does not allow unions of arbitrary

sub-regex, and accepts Kleene closures only over single any-
value characters.

Partitioning a REM into multiple smaller parts is a well-

known technique. In [12], a regex is split into a prefix and

a suffix to avoid or reduce state explosion in the prefix part.

A similar technique was also used in [6] to partition multiple

regexes into a head-DFA plus individual tail-NFAs. Both of

these works relied on the NFA-to-DFA conversion and various

DFA compression techniques to implement REM on shared-

memory multi-core architectures. As such, the regexes and

their prefixes were chosen carefully (and heuristically) to

minimize the DFA state explosion.

VII. CONCLUSION AND FUTURE WORK

We propose the compilation and optimization of arbitrarily

complex regexes into a novel SR-NFA architecture. SR-NFA

has very fast construction time and small memory footprint,

offers attack-resilient matching throughput, and can be mapped

efficiently on processor architectures. Future multi-core pro-

cessors are expected to have larger number of cores, wider

SIMD length (e.g. 256-bit AVX), and higher thread-level

parallelism in a shared memory system. By simply riding on

the wave of hardware improvement, and with a more optimized

implementation, we expect continual performance improve-

ment in REM using the proposed SR-NFA architecture.

REFERENCES

[1] Bro Intrusion Detection System. http://bro-ids.org.
[2] Clam AntiVirus. http://www.clamav.net/.
[3] PCRE: Perl Compatible Regular Expression.

http://www.pcre.org/.
[4] SNORT. http://www.snort.org/.
[5] Alfred V. Aho and Jeffrey D. Ullman. The Theory of Parsing,

Translation, and Compiling. Prentice-Hall, Inc., 1972.
[6] Michela Becchi and Patrick Crowley. A Hybrid Finite Automa-

ton for Practical Deep Packet Inspection. In ACM CoNEXT,
pages 1–12, 2007.

[7] Michela Becchi and Patrick Crowley. An Improved Algo-
rithm to Accelerate Regular Expression Evaluation. In Proc.
ACM/IEEE Sym. on Architecture for Networking and Commu-
nications Systems (ANCS), pages 145–154, 2007.

[8] João Bispo, Ioannis Sourdis, João M. P. Cardoso, and Stamatis
Vassiliadis. Regular expression matching for reconfigurable
packet inspection. In Proc. IEEE Intl. Conf. on Field Pro-
grammable Technology (FPT), pages 119–126, December 2006.

[9] Robert W. Floyd and Jeffrey D. Ullman. The Compilation of
Regular Expressions into Integrated Circuits. Journal of ACM,
29(3):603–622, 1982.

[10] J. Grosch. Efficient generation of lexical analyzers. Software–
Practice & Experience, 19(11):1089–1103, 1989.

[11] B. L. Hutchings, R. Franklin, and D. Carver. Assisting Net-
work Intrusion Detection with Reconfigurable Hardware. In
Proc. IEEE Sym. on Field-Programmable Custom Computing
Machines (FCCM), page 111, 2002.

[12] Sailesh Kumar, Balakrishnan Chandrasekaran, Jonathan Turner,
and George Varghese. Curing Regular Expressions Matching
Algorithms from Insomnia, Amnesia, and Acalculia. In Proc.
ACM/IEEE Sym. on Architecture for Networking and Commu-
nications Systems (ANCS), pages 155–164, 2007.

[13] Sailesh Kumar, Sarang Dharmapurikar, Fang Yu, Patrick Crow-
ley, and Jonathan Turner. Algorithms to Accelerate Multiple
Regular Expressions Matching for Deep Packet Inspection.
SIGCOMM Computer Communication Review, 36(4):339–350,
2006.

[14] Tsern-Huei Lee. Generalized aho-corasick algorithm for sig-
nature based anti-virus applications. In Proc. Intl. Conf. on
Computer Communications and Networks (ICCCN), 2007.

[15] Cheng-Hung Lin, Chih-Tsun Huang, Chang-Ping Jiang, and
Shih-Chieh Chang. Optimization of Regular Expression Pattern
Matching Circuits on FPGA. In Proc. Conf. on Design, Automa-
tion and Test in Europe (DATE), pages 12–17, 3001 Leuven,
Belgium, Belgium, 2006. European Design and Automation
Association.

[16] R. McNaughton and H. Yamada. Regular Expressions and State
Graphs for Automata. IEEE Trans. on Comput., 9(1):39–47,
March 1960.

[17] A. R. Meyer and M. J. Fischer. Economy of description by
automata, grammars, and formal systems. In Proc. 12th Sym.
on Switching and Automata Theory (SWAT ’71), pages 188–191,
Washington, DC, USA, 1971. IEEE Computer Society.

[18] Davide Pasetto, Fabrizio Petrini, and Virat Agarwal. Tools for
very fast regular expression matching. Computer, 43:50–58,
2010.

[19] Daniele Paolo Scarpazza, Oreste Villa, and Fabrizio Petrini.
Exact Multi-pattern String Matching on the Cell/B.E. Processor.
In Computing Frontiers, pages 33–42, 2008.

[20] R. Sidhu and V.K. Prasanna. Fast Regular Expression Matching
Using FPGAs. In Proc. IEEE Sym. on Field-Programmable
Custom Computing Machines (FCCM), pages 227–238, 2001.

[21] R. Smith, C. Estan, and S. Jha. Backtracking Algorithmic
Complexity Attacks against a NIDS. In Proc. 22nd Annual
Computer Security Applications Conference (ACSAC), pages
89–98, Dec. 2006.

[22] Randy Smith, Cristian Estan, and Somesh Jha Shijin Kong. De-
flating the Big Bang: Fast and Scalable Deep Packet Inspection
with Extended Finite Automata. In ACM SIGCOMM, August
2008.

[23] Giorgos Vasiliadis, Michalis Polychronakis, Spyros Antonatos,
Evangelos P. Markatos, and Sotiris Ioannidis. Regular expres-
sion matching on graphics hardware for intrusion detection. In
RAID, pages 265–283, 2009.

[24] Norio Yamagaki, Reetinder Sidhu, and Satoshi Kamiya. High-
Speed Regular Expression Matching Engine Using Multi-
Character NFA. In Proc. Intl. Conf. on Field Programmable
Logic and Applications (FPL), pages 697–701, Aug. 2008.

[25] Yi-Hua E. Yang, Weirong Jiang, and Viktor K. Prasanna.
Compact Architecture for High-Throughput Regular Expression
Matching on FPGA. In Proc. ACM/IEEE Sym. on Architectures
for Networking and Communications Systems (ANCS), Novem-
ber 2008.

[26] Yi-Hua E. Yang and Viktor K. Prasanna. Software Toolchain
for Large-Scale RE-NFA Construction on FPGA. Intl. Journal
of Reconfigurable Computing, 2009:10, 2009.

[27] Fang Yu, Zhifeng Chen, Yanlei Diao, T. V. Lakshman, and
Randy H. Katz. Fast and Memory-Efficient Regular Expression
Matching for Deep Packet Inspection. In Proc. ACM/IEEE Sym.
on Architecture for Networking and Communications Systems
(ANCS), pages 93–102, 2006.

432433

