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Abstract—Conventionally, regular expression matching (REM)
has been performed by sequentially comparing the regular
expression (regex) to the input stream, which can be slow due
to excessive backtracking [21]. Alternatively, the regex can be
converted to a deterministic finite automaton (DFA) for efficient
matching, which however may require an extremely large state
transition table (STT) due to exponential state explosion [17, 27].
We propose the segmented regex-NFA (SR-NFA) architecture,
where the regex is first compiled into modular nondeterministic
finite automata (NFA), then partitioned, optimized, and matched
efficiently on modern multi-core processors. SR-NFA offers
attack-resilient multi-gigabit per second matching throughput,
does not suffer from either backtracking or state explosion, and
can be rapidly constructed. For regex sets that construct a DFA
with moderate state explosion, i.e., on average 200k states in the
STT, the proposed SR-NFA is 367k times faster to construct and
update and use 23k times less memory than the DFA approach.
Running on an §8-core 2.6 GHz Opteron platform, our prototype
achieves 2.2 Gbps average matching throughput for regex sets
with up to 4,000 SR-NFA states per regex set.

Index Terms—Regular expression, NFA, bit-level parallelism,
thread-level parallelism, multi-core processor

[. INTRODUCTION

High-speed deep packet inspection, content filtering and
data mining are becoming more pervasive in the Information
Age. Regular expression matching (REM) is a core capability
of these functions, where pre-defined patterns are matched
against continuous input streams. Recent network intrusion
detection systems [1, 2, 4] rely on REM with dynamic sets of
complex regular expressions (regexes) against high bandwidth
and potentially malicious input streams. Such REM activities
can tax the underlying network processing system heavily in
both processing cycles and memory usage.

Conventionally, REM has been implemented in software
[3] where regex symbols are compared sequentially to the
input characters; such performance is highly input and regex
dependent and can be subject to the “backtracking” attack
[21]. Alternatively, REM can be performed by a finite automa-
ton, which is free of the backtracking behavior and can find
multiple and overlapping regex matches concurrently in the
input. A regex of length n over alphabet > can be compiled
into a nondeterministic finite automaton (NFA) with O(n)
states and at most O(n?) transitions [16]. At run-time, the
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NFA maintains the activeness of its states, each of which can
e-transition to zero or more states. In total the NFA makes
from O(1) to O(n?) state transitions per input character.

The NFA can be further converted to a deterministic finite
automaton (DFA), which maintains only one state number at
run-time. For each input character, the DFA looks up the state
transition table (STT) for one state transition, performs a small
(constant) amount of computation, and transitions to the target
state. The matching throughput of DFA-based REM is thus
limited by the (random-access) latency of the STT access. For
simple regexes whose STT can fit mostly in the processor
cache, DFA-based REM usually achieves very good matching
throughput on multi-core systems.

For some regexes, converting the O(n)-state NFA to a DFA
can generate an excessively large STT with up to O(2")
states and O(2" |X|) transitions, a phenomenon known as the
exponential state explosion [17, 27]. In these cases, DFA-based
REM becomes impractical on multi-core systems for several
reasons. First, a regex composed of several hundred symbols
(n > 100) can require a DFA STT with multi-gigabytes of
memory, which may not be feasible on platforms with limited
memory size (such as an on-line NIDS). Second, an input
that causes irregular state accesses across the entire STT can
cause cache thrashing and be used as an performance based
attack to the REM system. Third, due to (random-access)
memory bandwidth competition, the throughput of a state-
exploded DFA may not scale well in number of cores on a
shared-memory multi-core system (as shown in [19] before
applying input-specific training and optimizations). Finally, the
NFA-to-DFA conversion can be both computation and memory
expensive, making it difficult to update the REM solution.

Several techniques [7, 13, 22] have been proposed to
compress the STT by introducing nondeterminism to the DFA.
These nondeterministic features usually require more complex
run-time processing and multiple random memory accesses
per input character; both can reduce matching throughput.
The compression ratio is usually highly regex-dependent, and
the compressed DFA size still much larger than the original
NFA. The DFA compression algorithm can be complex (e.g.,
quadratic in the number of DFA states [7]), making regex
update even more difficult.

Due to the above reasons, we believe NFA-based REM
is a valuable complement to DFA-based REM on multi-core
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Table I: Commonly used basic and extended regex operators.

Op. Name ‘ Example ‘ Description
Concatenation Q192 g2 right after g1
| Union q1)q2 Either q1 or g2
* Kleene closure q* q zero or more times
+ Repetition q+ q one or more times
? Optionality q? q zero or one times
{m,n} | Constrained rep. | ¢ {m,n} q in m to n times
[...] Character class [a—¢] Either a, b or ¢
[~..] Inv. char. class "\r\n] Neither \r nor \n

systems. While most simple regexes can be handled by a
DFA, those complex regexes that would cause exponential
state explosion as DFAs can be processed by an efficient NFA
architecture:

1) We propose the segmented regex-NFA (SR-NFA) archi-
tecture for REM that explots both bit and thread-level
parallelism on multi-core systems.

We focus on fast REM compilation, small memory
footprint and scalable matching throughput in number of
cores. As a result, an SR-NFA with thousands of states
can be constructed entirely onto the level-1 cache of a
modern processor in a few millisecond.

We design optimizations to reduce memory and compu-
tation complexity of SR-NFA.

For regexes that would cause severe state explosion as DFA,
the proposed SR-NFA architecture reduces memory usage
from tens gigabytes to several kilobytes and construction time
from hours to seconds, and achieves 1.6~2.5 Gbps attack-
resilient throughput matching 200 ~ 3,200 regex symbols.

Section II gives the background on regular expression
matching. Basic concept and data structures of the SR-NFA ar-
chitecture are described in Section III; mapping and optimiza-
tion on multi-core processors are discussed in Section III-D.
A prototype implementation is evaluated in Section V. Sec-
tion VI goes over related works, while Section VII concludes
the paper and discusses future work.

2)

3)

II. BACKGROUND
A. Regex, REM, and Match Ratio

By definition, a regular expression (regex) describes a
regular language over a fixed alphabet. Three basic operators,
concatenation (-), union (|) and Kleene closure (x), provide
the facility to combine character symbols to form arbitrary
regex patterns. In addition, most regular expression matching
(REM) software also support several extended operators of-
fering convenient representations for complex pattern. Table I
lists the commonly supported regex operators.'

Definition 1: Given a regular expression (regex) r which
defines the regular language L(r) over alphabet X, and an
input character sequence X = [z - - - &), 2; € . The process

'Some software REM features such as backreference and recursion do not
produce regular languages. They are not the focus of this work.
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of regular expression matching (REM) for r searches X for all
sub-sequences X (/) C X, 1 < j < m, such that XU) € L(r).
We say the REM process matches regex r against input X of
length w and produces a set of m matches { X1, ... X(™)},

B. REM by Sequential Comparison

REM has been implemented as software libraries [3] where
the regex symbols are sequentially compared to the input char-
acters to search for a match condition. When there are more
than one possible regex symbols matching the input character
(usually due to the Kleene closure or union operators), the
alternative paths are selected one at a time in either a depth-
first (greedy) or a breadth-first (lazy) manner.

If, following the tentatively selected search path, a regex
symbol cannot accept an input character at some later point
in time, the matching progress must be backtracked to the
original selection point and a different path is selected. Alter-
native search paths may continue to fail, which can induce a
large number of backtracks for regexes with multiple Kleene
closures and unions over complex sub-patterns. Due to the
backtracking behavior, a regex with K multi-match segments
can require O(K?) times computation of a single segment
to determine whether a match exists in the input [21]. As
shown in [21], the backtracking behavior poses a serious
performance-based attack on the REM system that utilizes the
sequential comparison.

C. REM by Nondeterministic Finite Automata

REM can also be performed by an NFA through the
following procedures.

Definition 2: To match a regex r against a sequence of input
characters X by an NFA:

1: Obtain the matching regex r' by prefixing r with “. *
(Kleene closure over an any-character).

2: Construct an NFA to accept L(r’), following the
McNaughton-Yamada construction [16].

3: Feed the characters in X to the NFA. A match is found
when a match state is reached.

”

Step 1 above allows the resulting automata to search for
r anywhere inside X. As a result, the NFA constructed to
accept L(r’) in step 2 is different (and more complex) than
an NFA that accepts L(r).2 As long as the finite automaton
accepting L(r') is continuously fed with the input characters,
all matches (sub-sequences which are members of L(r)) in the
input will be reported by step 3. As such, NFA-based REM is
functionally more powerful than the serial REM.

With NFA-based REM, multiple states can be active at
the same time, while each active state can make transitions
to zero or more states per input character. Although the
number of states is linear in the length of the regex [9], high
memory/computation bandwidth per input character can be
required to access/process the transitions from all active states.

2Special operators (e.g., ~ and $, respectively) may be used to force the
search to begin and end at input boundaries (usually a newline or the EOF
character). For simplicity and without loss of generality, we assume these
conditions are taken care of when obtaining the matching regex r’.



Figure 1: A modular NFA for the regular expression

“\x2F (fn]s) \x3F [*\r\n]x (1]|&~*)".

This makes NFA-based REM inefficient when implemented
straight-forwardedly on processor-based systems.

D. REM by Deterministic Finite Automata

The NFA can be further converted to a DFA using the subset
construction algorithm, which traverses the NFA with all
possible input and find any subset of concurrently active NFA
states. Each such (unique) subset of NFA states is assigned to
a new DFA state.

With DFA-based REM, only one DFA state is active at any
time. For each input character, the DFA makes one access to
the state transition table (STT), performs a constant amount of
computation, and finds a single transition target. While being
computationally efficient (and optimal), the DFA can suffer
from state explosion [12, 22, 27] during its construction, where
the number of states required by the DFA is quadratically
or exponentially larger than the original NFA [17, 27]. State
explosion can be caused by certain regex patterns, or by
combining several non-exploding patterns in one DFA [27].

Without state explosion, DFA-based REM usually offers
better throughput performance than NFA-based REM on multi-
core systems. This is especially true when the size of the
DFA STT is in the same order of magnitude as the on-chip
cache size of the multi-core processor, in which case most
accesses to the STT are served quickly without accessing
external memory. When there is state explosion during the
DFA construction, DFA-based REM can become impractical
due to the large memory requirement, severe cache thrashing,
and extremely high construction and update complexity.

III. SR-NFA ARCHITECTURE
A. Modular NFA Construction

To compile a regex r into SR-NFA, we first obtain
a modular NFA for r using the modified McNaughton-

Yamada (MMY) construction [26]. Figure 1 shows
a modular NFA constructed by MMY for regex
“NxX2F (fn]s) \x3F [*\r\n]* (1]&*)”. With MMY,

each regex symbol always generates a pair of nodes in the
modular NFA; one node in the pair has € fan-in and labeled
fan-out transitions, while the other one has labeled fan-in
and € fan-out transitions. Each pair of nodes corresponds to
a state of the modular NFA.

The MMY construction can be graphically described as
Figure 2. Each oval represents the a sub-NFA, with both p and

Basic modified McNaughton-Yamada Constructions

Q000

\ n M- 2
~( copes) . (copee)

p{m,n}q
Figure 2: Graphical description of the basic (upper) and
extended (lower, supporting ?, + and {m,n}) MMY con-
structions.
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Figure 3: The state-reachability matrix of a single-segment
SR-NFA for Figure 1.

q representing sub-regexes. Each dashed line represents an e-
transition connecting the output of one sub-NFA to the input
of another. In the lower half of Figure 2, we further extend
the MMY construction to directly handle the extended regex
operators (see Table I). Both optionality (?) and repetition (+)
are special cases of the Kleene closure where the backward and
forward e-transitions, respectively, are omitted. Several cases
of constrained repetition ({m, n}) are possible, depending on
the relative values of m and n (whether they are equal to each
other, or to zero or infinity); we only show the general case
where 0 < m < n < oco. Handling these extended operators
directly helps to reduce the time and memory complexity of
the NFA construction.

B. Single-Segment SR-NFA

We first describe an SR-NFA with only one segment. We
observe that any modular NFA with n states can be fully
described in two data structures:

o An n x n state-reachability matrix, which records poten-

tial state transitions between every pair of states.

« An n-element character-acceptance vector, which records

the set of character values accepted by every NFA state.

1) State-Reachability Matrix (SRM): Figure 3 shows the
state-reachability matrix (SRM) for the modular NFA in Fig-
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Figure 4: The character-acceptance matrix of the SR-NFA in
Figure 1. All unspecified rows have value 0’s except at column
6, where they have value 1°’s.

ure 1. Each ’1” at row h and column £ in the SRM represents
an e-transition going from state h to state k.

At run time, each active NFA state will perform one SRM
lookup to find the vector of its e-transition targets. Such vectors
from all active stateas are bit-OR’d together to form the
vector of “potentially active” states prior to the input character
matching. Suppose p states are active concurrently at run time,
it takes p accesses to the SRM and p bit-OR operations to find
the next vector of potentially active states.

The memory complexity of an SRM with n states is exactly
n? bits or [n?/8] bytes.

2) Character-Acceptance Matrix (CAM): Figure 4 shows
the character-acceptance matrix (CAM) for the modular NFA
in Figure 1. A ’1’ at row ¢ and column k in the CAM shows
that character c is accepted by state k& in the NFA.

Note that instead of creating a vector with n (variable-
length) lists of character values, one list for each state, we
use a matrix of size 256 x n to encode the acceptance of
every character value (total 256 values) at every state (total
n states). In the worst case, this can increase the memory
complexity by 256/8 = 32 times, suppose each state accepts
only a single (8-bit) character value. However, due to the
(common) use of character classes in real-life regexes, an
NFA state often accepts a (custom-defined) character class
with tens and even hundreds of values. In addition, the matrix
representation allows us to perform character matching for all
n states in a single row-access to the CAM followed by one
bit-AND operation.

For a modular NFA of n states, the CAM has memory
complexity of 256 x n bits of 32 X n bytes.

3) Single-Segment Operation: Algorithm 1 describes the
run-time algorithm of single-segment SR-NFA.

C. Data Structures for Multi-Segment SR-NFA

With only one segment in the SR-NFA, the memory com-
plexity of the SRM grows quadratically in the number of
states. In addition, each bit-AND and bit-OR on the state
vector becomes a proportionally more complex operation. The
size of the SRM can become exceessively large for a single-
segment SR-NFA with a few thousand states. On the other
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Algorithm 1 Single-segment SR-NFA Operation.

Require: A state-reachability matrix R; a character-
acceptance matrix A; an initial state vector ¢ and a match
state vector m.

Ensure: Regular expression matching (REM) for regex r
corresponding to (R, A, q,m)

1: The SR-NFA maintains a bit-vecotr ¥ = [v; - - - v,,], where
each v; corresponding to one NFA state.
2: for each input character ¢ do

3: ¥ < v 0R g {initial states from NFA root(s)}
4 U< 0 AND A(c) {character matching}
5. <+ [0---0] {atemporary states}

6: for eachv; =1,1<i<n do

7: t < t OR R(v;)

8: end for

9: v+t {update run-time states}

10 1<+t AND m

1: if t#1[0---0] then

12: Report ¢ as match(es)

13:  end if

14: end for

hand, the SRM is usually very sparse in the NFAs for most
real-life regexes.

To improve memory efficiency, we partition large SR-NFA
into multiple segments of the same length. Ideally, each state
in one segment only transitions to none or few states in other
segments, with the length of the semgents matching the size
of the longest word in the multi-core processor. Algorithm 2
describes the heuristics we use to segment a large SR-NFA.
Note that due to the recursive nature of the MMY construction
(see Section III-A), the SR-NFA has a rather “clean” structure
with each state transitioning either forward or backward to a
relatively small number of target states. We take advantage of
this “natural order” of states when partitioning the SR-NFA
into multiple segments.

After the partitioning, each segment has its own SRM to
handle the intra-segment e-transitions. In addition, two types
of pseudo-states and transition matrices are added to each
segment to handle cross-segment e-transitions:

o A set of forward-pseudo states and a forward-transition
matrix (FTM), which relay forward e-transitions to the
next segment (usually caused by long chains of cancate-
nations and/or wide unions in the regex).

A set of backward-pseudo states and a backward-
transition matrix (BTM), which relay backward e-
transitions to the previous segment (always caused by
Kleene closures around large sub-regexes).

To make cross-segment transitions, the SRM of each segment
is slightly widened to cover the forward and backward-pseudo
states in that segment. When a state needs to make a cross-
segment transition, it first transitions to a forward-pseudo
(backward-pseudo) state, which then relays the transition to
the next (previous) segment by accessing the corresponding



Algorithm 2 SR-NFA segmentation algorithm.

1: for each state do {find its “natural order”}

2:  First based on the forward e-transitions caused by the
concatenate operators.

3:  Then based on the backward e-transitions caused by the
* Or + operators.

4:  Finally based on the e-transitions caused by the union
or other operators.

5: end for

6: for each state in above order do {find state number}

7: ~ Number the state in its natural order.

8:  If two states were not relatively ordered, then either one

can have a lower state number.

9: end for

10: for each state in increasing state number do
11:  if the current segment is full then

12: Create a new segment.

13: Use the new segment as current segment.
14:  end if

15:  Add the state into the current segment.

16: end for

row in the FTM (BTM).

More importantly, the FTM (BTM) is also widened to let
the pseudo state transition to all normal and pseudo states in
the next (previous) segment. This allows a forward (backward)
transition to go across multiple segments by passing through
multiple pseudo states.

Specifically, assume the SR-NFA is partitioned into s seg-
ment, where each segment 7,0 < 7 < s — 1, has n; normal
states, f; forward-pseudo states and b; backward-pseudo states.
The SRM of segment ¢ is extended to size n x (n; + f; + b;),
with additional columns corresponding to the forward and
backward-pseudo states. The FTM of segment ¢ is a bit matrix
of size f; X (nj41+ fi+1), allowing the forward-pseudo states
of segment ¢ to e-transition to both normal and forward-pseudo
states of segment ¢ + 1. Similarly, the BTM of segment 7 has
size b; X (n;—1 + b;_1), allowing e-transitions to both normal
and backward-pseudo states of segment 7 — 1.

Figure 5 shows a multi-segment SR-NFA for the modular
NFA in Figure 1. Each segment in Figure 5 has up to 3 normal
states and 2 forward-pseudo states. For clear presentation
we did not use backward-pseudo states in this example; the
backward transitions are handled in the same way (although
in a revsered direction) as the forward transitions. Figure 6
shows the per-segment SRM and FTM to implement the multi-
segment SR-NFA in Figure 5. Note that instead of using an
8 x 8 SRM as in Figure 3 for the single-segment SR-NFA,
here we have 5 much smaller matrices resulting in over 40%
reduction of memory usage.

D. Multi-Segment SR-NFA Processing

To update the run-time states for REM on a multi-segment
SR-NFA, three types of processing are performed iteratively,
one iteration per input character.
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Figure 5: The segmented SR-NFA converted from Figure 1
with automatically introduced forward-pseudo states.

Segment 0: states 1 through 3

Reachability matrix
|2 3 F1 P2

1 1

Forwarding matrix
|4 5 6

1

F3

F1
F2

1

Segment 1: states 4 through 6
Reachability matrix

Forwarding matrix

|5 6 F3 |7 8 E
41 FBl[1]1]1
5 1] 1
6 1 1

Segment 2: states 7 and 8
Reachability matrix Forwarding matrix
7 8 E
71 1
1

(None needed)

Figure 6: Per-segment reachability and forwrading matrices
for the segmented SR-NFA in Figure 5.

1) Intra-segment processing (ISP) : Two operations are
performed by ISP: character matching and intra-segment tran-
sitions. Both are handled in the same way as described in
Algorithm 1. The only difference is that the number of colums
in the state-reachability matrix (SRM) is increased to include
both forward-pseudo and backward-pseudo states as transition
targets. On the other hand, the pseudo-states do not take place
in the character-acceptance matrix (CAM). The pseudo-state
values are cleared at the character matching step.

With the number of states per segment matching the length
of the processor word, the worst-case time complexity of ISP
per input character becomes linear in the number of segments.
Furthermore, only the active states in a segment need to be
processed, and in practice the number of concurrently active
states is usually much smaller than the total number of states
in the segment. With the help of bit manipulation instructions
such as BSR (bit scan reverse) and LZCNT (leading zero
count), the time complexity of ISP per input character can be
reduced to the number of active states in the segment.

Because ISP only concerns state transitions within individ-
ual segments, for each input character, ISP for all segments



can be performed independently in any order.

2) Forward-segment processing (FSP): FSP handles e-
transitions from one segment to a following segment between
two iterations of ISP. For each segment, FSP must be per-
formed after ISP, which produces the initial set of active
forward-pseudo states (if any) in that segment.

A forward e-transition can go across multiple segments by
passing through multiple forward-pseudo states in consecutive
segments. An active forward-pseudo state is cleared after it
makes its e-transitions. Eventually, every forward-pseudo state
will e-transition to some normal states in the following seg-
ments, upon which time the current iteration of FSP is finished.
This can be performed efficiently by sweeping through the SR-
NFA from the first segment till the last segment. Specifically,
we first process the active forward-pseudo states in segment 0,
making any e-transitions to the (normal and forward-pseudo)
states in segment 1; then, we process the active forward-pseudo
states in segment 1, making any e-transitions to the states in
segment 2; and so on, until we reach the last segment.

The time complexity of FSP per input character is bounded
by the total number of segments times the maximum number
of active forward-pseudo states per segment. In practice,
the number of active forward-pseudo states at run time is
usually much less than the number of active states; the total
computation complexity of FSP NFA is usually less than that
of ISP. However, due to the strong (sequential) dependency
between FSP on consecutive segments, there is much less
instructio-level parallelism (ILP) in FSP than in ISP.

3) Backward-segment processing (BSP): BSP is similar to
FSP except BSP handles e-transitions in the reverse direction,
from one segment to a previous segment. . BSP also must be
performed on any segment after ISP, which will produce the
initial set of backward-pseudo states active in that segment.

To relay potentially long backward e-transitions across
multiple segments, BSP is performed from the last segment
back to the first segment in (reversed) consecutive order. In
practice, the time complexity of BSP per input character is
even smaller than that of FSP, since there is usually very few
long-range backward e-transitions (always caused by Kleene
closures over large sub-regexes) in real-world SR-NFAs.

Although BSP must be performed sequentially on consec-
utive segments in the reverse order, it can be performed in
parallel to FSP with proper segment locking mechanism.

IV. SR-NFA OPTIMIZATIONS
A. Specialized STR and REP Segments

Even with a multi-segment SR-NFA, the various matri-
ces, especially the state-reachability matrix (SRM) and the
character-acceptance matrix (CAM) can still be sparse for two
common types of regex sub-patterns:

o String: A sequence of characters concatenated one after

another. E.g., “Authentications\s:”.

e Repetition: A single character class is repeated a large

number of times. E.g., “[~\r\n] {1024}”.
We notice that in the case of string sub-pattern, every state
within its span implicitly e-transitions to the next adjacent
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state, thus the SRM is not needed. In the case of repetition
sub-pattern, all states within its span accept the same character
class, thus neither the SRM nor the CAM is needed.

Recall that with k-byte segments, a set of n states can take
[k x n] bytes in the SRM and 32 x k bytes in the CAM. Thus
representing sub-strings or sub-repetitions in normal SR-NFA
segments can waste a lot of memory for unused space in SRM
and CAM. Such memory inefficiency can boast the SR-NFA
size and reduce its critical cache performance. To alleviate
this problem, we design two types of specialized segments,
STR and REP, to handle the sub-strings and sub-repetitions
respectively.

1) Basic STR and REP optimizations: Instead of occupying
one normal segment bit by every sub-string state, we create
an STR segment of n bits to hold a sub-string of n states. In
addition, we add three STR-related special bits to the normal
segment: an entry bit signalling when and where to active
the first state in the sub-string, an valid bit showing the
“activeness” of the sub-string, and an exit bit specifying when
to check for the output condition of the sub-string. The STR
segment has no SRM, but is associated with its own CAM.?

At run-time, whenever the entry bit for an STR segment is
activated, the least-significant bit in the STR segment is set to
1. For each input character, the STR segment is simply left-
shifted by 1 bit before the segment is matched to the input
character. When a ’1’ reaches the most-significant bit in the
STR segment, the exit bit for the STR segment is set to ’1’ in
the normal segment, from which transitions to other states in
the normal segment can commence.

Similarly, we create an REP segment of n bits to hold a sub-
repetition of n states. The REP segment requires neither SRM
or CAM; the entire REP segment can be matched to the input
character as a single bit in the normal segment. This results
in even greater savings in both memory and computation
complexity.

2) Advanced STR and REP optimizations: On top of the
basic optimizations described above, we further perform more
sophisticated optimizations to map the STR and REP segments
more efficiently onto the processor architectures.

First, we notice that there can be many short (< 10 symbols)
sub-strings in a regex, resulting in numerous “call-outs” to
the STR processing. To handle such cases more efficiently on
modern processors with long words, we design mechanisms
to “merge” multiple short sub-strings into one long (64-bit)
STR segment in byte granularity. The entire STR segment is
processed as a single unit, while each short sub-string still
maintains its “identity” through the valid bit associated with
it in the normal segment.

For sub-repetitions, it is the opposite scenario. Often a
character class is repeated hundreds of times. Storing long and
variable-length bit vectors is rather computationally expensive
in most processor architectures. Instead, we dissect a long sub-
repetition into multiple REP segments, each with the length of

3In REM most strings are compared in a caseless manner, while some have
complex character classes. Using CAM offers speed advantage by comparing
the sub-string to the input character in parallel.



a processor word. This allows multiple long sub-repetitions to
be stored and processed in a uniform word array.

These two optimizations lay the groundwork for our final
optimization technique, an “activeness” bitmap for both types
of specialized segments. Because all STR or REP segments now
have the same (processor word) length and are processed in a
uniform way, we can use a bitmap to represent their activeness,
one bit per segment. By paying a little extra memory and
computation, the bitmap allows the REM process to skip the
non-active segment processing quickly using the LZCNT and
BSR instructions (see end of Section III-D1).

B. Merging multiple regexes

Many real-world regexes can be short after removing long
sequences of sub-strings and sub-repetitions. Over one-third
regexes used by Snort IDS [4] consists of less than 40
characters and compiles to no more than 40 NFA states.
One way to improve the throughput performance of multi-
pattern REM is to merge multiple short regexes into a single
segmented SR-NFA. This is especially beneficial if various
regexes share a common prefix, for which only one set of
SR-NFA states are needed.

Eventually, however, various merged regexes will diverge
to different match states. If M regexes are merged to be
processed together, then the resulting SR-NFA shall have a
tree-like structure with A leaves. To handle such match-
state divergence, the SR-NFA can use a tree-like segmentation
structrue where all segments are organized in a binary tree,
rather than a linear sequence. In an s-segment SR-NFA with
tree-like structure, each segment 4,1 < i < s/2, can make two
types of forward transitions: one to segment 27 and the other to
segment 2¢+1; each segment j,1 < j < s, can make backward
transitions only to segment |j/2]. Segments numbered from
[s/2] to s are “leaf” segments, whose forward-pseudo states
are overloaded as the special match states.

Figure 7 graphically shows an example where 9 regexes
(r1-r9), some sharing common prefixes, are merged into a
segmented SR-NFA with 7 segments (s1-s7) using the tree-
like segmentation structure. Inside the segments, each colored
stripe on the left represents a sub-pattern of a particular regex;
each colored bar on the right represent a forward-pseudo state
for some sub-pattern. The dotted arrows show the sequence
of segments and forward-pseudo states traversed in order to
match regex r1 (purple) and r6 (brown), respectively.

Note that merging multiple regexes is different from union-
ing. With merging, each regex still maintains its identity; for
example, matching r1 in Figure 7 remains distinguishable
from matching r 9. With unioning, however, multiple regexes
become a single, indistinguishable one. This difference is espe-
cially important for deep packet inspection type of applications
where matched regexes have critical individual significance.

C. Thread-level Parallelism for Multi-Regex Matching

Modern multi-core processors are built with increasingly
large numbers of cores. Each core is often equipped with
a dedicated level-1 (L1D) and/or leve-2 (L2D) data cache,
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Figure 7: Example of 9 regexes (r1-r9) merged into a 7-
segment (s1—s7) SR-NFA with the tree-like structure.

ranging from a few tens to several hundred kilobytes in size.
In order to achieve scalable performance, it is especially
important to take advantage of the on-chip cache resources and
to fully utilize the available cores on the multi-core processors.
Below we describe two dimensions of thread-level parallelism
that can be exploited by our SR-NFA architecture on a generic
class of multi-core systems.

1) Parallelism with multiple regexes: Given the relatively
small size of most real-life SR-NFA, we can run a different
SR-NFA on every core in a multi-core system without increas-
ing much bandwidth pressure to the (shared) memory subsys-
tem. This allows us to scale up the number of concurrently
matched regexes proportionally to the total number of cores
without sacrificing the matching throughput.

For example, asssume each segment in the SR-NFA has up
to 40 normal states, 16 forward-pseudo states and 8 backward-
pseudo states. According to Section III, the run-time states of
each segment will be 8 bytes (64 bits) in length; the per-
segment SRM will take 40 x 8 = 320 bytes and the CAM
256 x 5 = 1,280 bytes. Plus the FTM 16 x 8 = 128 bytes and
the BTM 8 x 8 = 64, the entire segment can fit into 2 KB of
cache memory. The use of STR and REP segments can further
increase the total number of NFA states handled with little
memory requirement. Using the SR-NFA architecture, most
real-world regexes (even those compiled into hundreds of NFA
states) can be mapped entirely onto several tens kilobytes of
level-1 data cache in modern microprocessors.

2) Parallelism with multiple inputs: 1t is possible for a
multi-core system to process a single SR-NFA in multiple
cores with different inputs. Due to the small memory footprint
of the SR-NFA, having more cores accessing multiple SR-
NFAs will not pressure the external memory. Since the number
of cores in modern multi-core systems is increasing at a much
higher speed than the number of memory channels, SR-NFA
can achieve a much better throughput scaling for matching
regexes that would otherwise be converted to a large (state-
exploded) DFA.



Table II: Memory usage for various segment sizes

Seg. type 32 48 64 STR | REP
(bits) 22:7:3 | 33:11:4 | 44:15:5 | 64 64
CAM 704 1056 1408 | 2048 | N/A
SRM 88 198 352 | N/A | N/A

FIM+BTM | 40 90 160 | N/A | N/A
Total 832 1344 1920 | 2048 | 0
Bytes/state | 47 | 51 [ 55 [ 4 [ o |

V. PERFORMANCE EVALUATION
A. Resource Usage

Table II shows the amount of memory used for segments
of various types and lengths in our SR-NFA. We implemented
32, 48, and 64-bit normal segments, as well as 64-bit STR
and REP segments. Larger segments trade memory efficiency
off for matching capacity. For example, by increasing segment
size from 32 bits to 64 bits, we can process a 2x larger SR-
NFA with roughly the same throughput; on the other hand,
memory usage increases from 4.7 to 5.5 bytes/state.

While both specialized (STR and REP) segments are pro-
cessed 64 bits at a time, their designs (Section IV-A) allow
each segment to be utilized with single-byte granularity (i.e.,
each 64-bit STR or REP segment can store up to § short sub-
strings or sub-repetitions, respectively).

Although the 64-bit STR segment has a relatively large
memory size, its run-time processing is much simplified. There
is no SRM/FTM/BTM accesses needed, significantly lowering
the memory bandwidth required to process these segments.
The REP segment is essentially “free” in terms of memory
footprint (except the run-time state of 64 bits per segment). It
has even lower processing complexity than the STR segment,
as discussed in Section IV-A.

B. Construction Time

The REM solution construction time (or compilation time)
is a metric often ignored in the literature. However, in real-
world applications, it is usually one of the most important
metric for the usability of a REM program. In a dynamic
setting where regexes can be continually updated, or where
different subsets of regexes can be used to match against var-
ious inputs, the ability to quickly construct an REM solution
while still offering good performance becomes important.

Figure 8 shows the average time it takes to compile Snort
regexes incrementally into the SR-NFA architecture using
Algorithm 2. Analytically, each step in Algorithm 2 has time
and space complexity no worse than linear in total number
of states. In practice, compiling a regex (to 20 ~ 4,000 states)
takes less than 0.3 ms for all the tested real-life regexes used by
Snort. The sub-millisecond construction allows our SR-NFA
architecture to be updated at run time.

C. Throughput Performance

We evaluated our SR-NFA prototype on a dual-socket quad-
core Opteron 2382 server. For evaluation, we used 64-bit
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Figure 8: Compilation time (in milliseconds) per regex to
build an incrementally larger SR-NFA for the set of “regular”
regexes used by Snort rules.

normal and specialized (STR and REP) segments. Each normal
segment consists of 44 character matching state, 14 forward-
pseudo 4 backward-pseudo states. Not all pseudo states are
utilized in most segments. The fixed number of pseudo states
helps us simplify the programming and slighly improves the
run-time performance.

We partition 1134 real-life regexes from the Snort rulesets

in two groups:

1) Those “simple” sets of regexes which can be compiled
to DFAs with little or moderate state explosion. Each of
these DFAs has an STT taking less than 1 GB memory
and can be constructed in less than half an hour.

2) Those “complex” sets of regexes which are compiled
to DFAs with severe state explosion, resulting in multi-
gigabytes STT size and taking hours for compilation
(some could not even be practically completed).

In both groups above, a regex set consists of 2 to 7 regexes
and is compiled to an SR-NFA with 80 to 4,000 states. In total
we created 280 set, or on average 4 regexes per set. While 4
regexes per set is a relatively small number, we note that such
arrangement is actually useful in real-life scenarios:

« In practice, we usually do not need to match a large set
of regexes against a single input (e.g., an Internet traffic
flow). Instead, once the type of the input is identified, a
small set of regexes associated with the type is used.

« For all complex and even some simple regex sets, adding
more regexes results in exponentially larger STT and long
compilation time. Thus matching in small subgroups may
be the only choice (if at all possible) for these regex sets.

« Most simple regex sets do not cau